Microbes from Antarctica as a source for understanding cold adaptive Halal enzymes

Muhammad Asyraf Abd Latip, Noor Faizul Hadry Nordin, C Gomez-Fuentes Abstract - 99 PDF - 28


Enzymes are widely used in various industries as they exhibit many outstanding benefits. They function to accelerate the reaction process which is more advantageous compared with chemicals as catalysts. However, the halal status of enzymes has been argued especially in food industries. This is because some of the enzymes originate from animal sources. The main concern with this issue is regarding the compatibility of these sources with the Islamic law. Beside animals and plants, microorganisms also play a vital role in producing various types of enzymes naturally. In relation to their halalness, enzymes extracted from microbes are considered as halal. Antarctica is a new frontier with a diverse microbial community that shows a potential for bio prospecting. The extremophiles existing in this region produce enzymes that can function in extreme conditions. Some of these enzymes suit the industrial requirement. The microorganisms obtained from Antarctica are very useful for harnessing and bio prospecting of such enzymes due to their great potential and diverse applications in many industrial fields in the future.

Full Text:



Adapa, V., Ramya, L. N., Pulicherla, K. K., et al. (2014). Cold active pectinases: Advancing the food industry to the next generation. Applied Biochemistry And Biotechnology, 172(5): 2324–2337.

Adrio, J., & Demain, A. (2014). Microbial enzymes: Tools for biotechnological processes. Biomolecules, 4(1): 117–139.

Al-Bar, O. A., (2012). Characterization of partially purified catalase from camel (Camelus dromedarius) liver. African Journal of Biotechnology, 11(40): 9633–9640.

Al-Alaq, F. T., Abdulazeem, L., Al-Dahmoshi, H. O. M., et al. (2016). PCR-based investigation of oxygenase among crude oil degrading bacteria in Hilla city, Iraq. International Journal of Pharm Tech Research, 9(5): 284–291.

Albino, A., De Angelis, A., Marco, S., et al. (2014). The cold-adapted γ-glutamyl-cysteine ligase from the psychrophile Pseudoalteromonas haloplanktis. Biochimie, 104: 50–60.

Alptekin, Ö., Tükel, S.S. & Yildirim, D., (2008). Immobilization and characterization of bovine liver catalase on eggshell. Journal of the Serbian Chemical Society, 73(6): 609–618.

Alvarez, M., Zeelen, J.P., Mainfroid, V., et al. (1998). Triose-phosphate Isomerase (TIM) of the Psychrophilic BacteriumVibrio marinus KINETIC AND STRUCTURAL PROPERTIES. Journal of Biological Chemistry, 273(4): 2199–2206.

Alzeer, J., Rieder, U., & Hadeed, K. A. (2018). Rational and practical aspects of Halal and Tayyib in the context of food safety. Trends in Food Science & Technology, 71: 264–267.

Angelaccio, S., Florio, R., Consalvi, et al. (2012). Serine hydroxymethyltransferase from the cold adapted microorganism Psychromonas ingrahamii: A low temperature active enzyme with broad substrate specificity. International Journal of Molecular Sciences, 13(2): 1314–1326.

Anisimov, O., Fitzharris, B., Hagen, J. O., et al. (2001). Polar regions (Arctic and Antarctic). Climate Change, 801–841.

Arshad, Z. I. M., Amid, A., Yusof, F., et al. (2014). Bromelain: An overview of industrial application and purification strategies. Applied Microbiology and Biotechnology, 98(17): 7283–7297.

Atsumi, S., Hanai, T., & Liao, J. C. (2008). Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451(7174): 86.

Barkia, A., Bougatef, A., Nasri, R., et al. (2010). Trypsin from the viscera of Bogue (Boops boops): Isolation and characterisation. Fish Physiology and Biochemistry, 36(4): 893–902.

Bernbäck, S., Hernell, O., & Bläckberg, L. (1985). Purification and molecular characterization of bovine pregastric lipase. European Journal of Biochemistry, 148(2): 233–238.

Blamey, J. M., Fischer, F., Meyer, H. P., et al. (2017). Enzymatic biocatalysis in chemical transformations: A promising and emerging field in green chemistry practice. In G. Brahmachari (Ed.), Biotechnology of microbial enzymes (pp. 347–403). Elsevier.

Bowman, K. J., Pla, R. L., Guichard, Y., et al. (2001). Evaluation of phosphodiesterase I-based protocols for the detection of multiply damaged sites in DNA: The detection of abasic, oxidative and alkylative tandem damage in DNA oligonucleotides. Nucleic Acids Research, 29(20): e101–e101.

Bujacz, A., Rutkiewicz-Krotewicz, M., Nowakowska-Sapota, K., et al. (2015). Crystal structure and enzymatic properties of a broad substrate-specificity psychrophilic aminotransferase from the Antarctic soil bacterium Psychrobacter sp. B6. Acta Crystallographica Section D: Biological Crystallography, 71(3): 632–645.

CAF, Y., Valipour, E., & Arikan, B. (2014). Isolation and characterization of alkalin, halotolerant, detergent-stable and cold-adaptive-amylase from a novel isolate Bacillus sp. Calp12-7. International Journal of Current Microbiology and Applied Sciences, 3(4): 950–960.

Cavicchioli, R., Charlton, T., Ertan, H., et al. (2011). Biotechnological uses of enzymes from psychrophiles. Microbial Biotechnology, 4(4): 449–460.

Choi, J. M., Han, S. S., & Kim, H. S. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances, 33(7): 1443–1454.

Crespim, E., Zanphorlin, L. M., de Souza, F. H., et al. (2016). A novel cold-adapted and glucose-tolerant GH1 β-glucosidase from Exiguobacterium antarcticum B7. International Journal of Biological Macromolecules, 82: 375–380.

Dalmaso, G., Ferreira, D., & Vermelho, A. (2015). Marine extremophiles: A source of hydrolases for biotechnological applications. Marine Drugs, 13(4): 1925–1965.

Deepthi, S., Johnson, A., & Pattabhi, V. (2001). Structures of porcine β-trypsin–detergent complexes: The stabilization of proteins through hydrophilic binding of polydocanol. Acta Crystallographica Section D: Biological Crystallography, 57(11): 1506–1512.

Dura, A., & Rosell, C. M. (2016). Enzymes in baking (pp. 295-314). Boca Raton, FL: CRC Press (Taylor & Francis Group).

Elleuche, S., Fodor, K., Klippel, B., et al. (2013). Structural and biochemical characterisation of a NAD+-dependent alcohol dehydrogenase from Oenococcus oeni as a new model molecule for industrial biotechnology applications. Applied Microbiology And Biotechnology, 97(20): 8963–8975.

Esteban-Torres, M., Mancheño, J. M., de las Rivas, B. et al. (2014). Characterization of a cold-active esterase from Lactobacillus plantarum suitable for food fermentations. Journal Of Agricultural And Food Chemistry, 62(22): 5126–5132.

Featherstone, S. (Ed.). (2015). A complete course in canning and related processes: Volume 3 Processing Procedures for Canned Food Products. Woodhead Publishing.

Fenice, M. (2016). The psychrotolerant Antarctic fungus Lecanicillium muscarium CCFEE 5003: A powerful producer of cold-tolerant chitinolytic enzymes. Molecules, 21(4): 447.

Fersht, A. (1999). Structure and mechanism in protein science: A guide to enzyme catalysis and protein folding. Macmillan.

Florio, R., di Salvo, M.L., Vivoli, M. et al. (2011). Serine hydroxymethyltransferase: A model enzyme for mechanistic, structural, and evolutionary studies. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1814(11): 1489–1496.

Georlette, D., Jonsson, Z. O., Van Petegem, F., et al. (2000). A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. European Journal of Biochemistry, 267(12): 3502–3512.

Gerday, C., Aittaleb, M., Bentahir, M., et al. (2000). Cold-adapted enzymes: From fundamentals to biotechnology. Trends in Biotechnology, 18(3): 103–107.

Godoy, S., Violot, S., Boullanger, P., et al. (2005). Kinetics study of Bungarus fasciatus venom acetylcholinesterase immobilised on a langmuir–blodgett proteo‐glycolipidic bilayer. ChemBioChem, 6(2): 395–404.

Gómez-Anquela, C., García-Mendiola, T., Abad, J. M., et al. (2015). Scaffold electrodes based on thioctic acid-capped gold nanoparticles coordinated Alcohol Dehydrogenase and Azure A films for high performance biosensor. Bioelectrochemistry, 106: 335–342.

Henke, E., Bornscheuer, U. T., Schmid, R. D., et al. (2003). A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases. ChemBioChem, 4(6): 485–493.

Hosseinipour, S. L., Khiabani, M. S., Hamishehkar, H., et al. (2015). Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles for potential application in food industries. Journal of Nanoparticle Research, 17(9): 382.

Houen, G., Madsen, M. T., Harlow, K. W., et al. (1996). The primary structure and enzymic properties of porcine prochymosin and chymosin. International Journal of Biochemistry and Cell Biology, 28(6): 667–676.

Ismail, I., Abdullah, N. A. N., Ahmad, Z., et al. (2018). Halal principles and Halal purchase intention among muslim consumers. In Proceedings of the 3rd International Halal Conference (INHAC 2016) (pp. 131-138). Springer, Singapore.

Joint FAO/WHO Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, & World Health Organization. (2001). Codex Alimentarius: General requirements (food hygiene) (Vol. 1). Food & Agriculture Org.

Joshi, S., & Satyanarayana, T. (2013). Biotechnology of cold-active proteases. Biology, 2(2): 755–783.

Juturu, V., & Wu, J. C. (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33: 188–203.

Karan, R., Capes, M. D., DasSarma, P., et al. (2013). Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnology, 13(1): 3.

Kim, S. M., Park, H., & Choi, J. I. (2017). Cloning and characterization of cold-adapted α-amylase from Antarctic Arthrobacter agilis. Applied Biochemistry and Biotechnology, 181(3): 1048–1059.

Ko, J. K., Um, Y., Woo, H. M., et al. (2016). Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresource Technology, 209: 290–296.

Kumar, A., Grover, S., Sharma, J., et al. (2010). Chymosin and other milk coagulants: Sources and biotechnological interventions. Critical Reviews in Biotechnology, 30(4): 243–258.

Kumar, A., Sharma, J., Mohanty, A. K., et al. (2006). Purification and characterization of milk clotting enzyme from goat (Capra hircus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 145(1): 108–113.

Lee, D. H., Choi, S. L., Rha, E., et al. (2015). A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. BMC Biotechnology, 15(1): 1.

Li, J., Hu, Q., Li, Y., & Xu, Y. (2015). Purification and characterization of cold-adapted beta-agarase from an Antarctic psychrophilic strain. Brazilian Journal of Microbiology, 46(3): 683–690.

Li, J.L., Yu, Q.L., Zhang, L., et al. (2012). Purification and characteristics of trypsin from the pancreas of tibetan sheep. Journal of Food Biochemistry, 36(1): 122–128.

Lin, T., Bai, X., Hu, Y., et al. (2017). Synthetic Saccharomyces cerevisiae‐Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell. AIChE Journal, 63(6): 1830–1838.

Liu, Z. Q., Zheng, W., Huang, J. F., et al. (2015). Improvement and characterization of a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicus and its application in production of high fructose corn syrup. Journal of Industrial Microbiology & Biotechnology, 42(8): 1091–1103.

Ma, G., & Su, Z. G. (2013). Microspheres and microcapsules in biotechnology: Design, preparation and applications. Pan Stanford.

Mageswari, A., Subramanian, P., Chandrasekaran, S., et al. (2017). Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium sp. Food Chemistry, 217: 18–27.

Malak, C. A. A., El Adab, I. F. A., Vukashinovic, V., et al. (1996). Buffalo (Bos buffali L.) chymosin purification and properties. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 113(1): 57–62.

Matsui, M., Kawamata, A., Kosugi, M., et al. (2017). Diversity of proteolytic microbes isolated from Antarctic freshwater lakes and characteristics of their cold-active proteases. Polar Science, 13: 82–90.

Merín, M. G., & Morata de Ambrosini, V. I. (2015). Highly cold‐active pectinases under wine‐like conditions from non‐Saccharomyces yeasts for enzymatic production during winemaking. Letters in Applied Microbiology, 60(5): 467–474.

Miao, L. L., Hou, Y. J., Fan, H. X., et al. (2016). Molecular structural basis for the cold-adaptedness of psychrophilic β-glucosidase BglU in Micrococcus antarcticus. Applied and Environmental Microbiology, 82(7): 2021–2030.

Mikucki, J. A., Pearson, A., Johnston, D. T., et al. (2009). A contemporary microbially maintained subglacial ferrous" ocean". Science, 324(5925): 397–400.

Mitsuda, H., & Yasumatsu, K. (1955). Crystallization of animal catalase and studies on its optimum temperature. Journal of the Agricultural Chemical Society of Japan, 19(3): 200–207.

Mu, W., Li, W., Wang, X., et al. (2014). Current studies on sucrose isomerase and biological isomaltulose production using sucrose isomerase. Applied Microbiology and Biotechnology, 98(15): 6569–6582.

Nadeem, S. M. S., Khan, J. A., Murtaza, B. N., et al. (2015). Purification and properties of liver catalase from water buffalo (Bubalus bubalis). South Asian Journal of Life Sciences, 3(2): 51–55.

Nealon, C. M., Musa, M. M., Patel, J. M., et al. (2015). Controlling substrate specificity and stereospecificity of alcohol dehydrogenases. Acs Catalysis, 5(4): 2100–2114.

Nilsen, I. W., Øverbø, K., & Olsen, R. L. (2001). Thermolabile alkaline phosphatase from Northern shrimp (Pandalus borealis): Protein and cDNA sequence analyses. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 129(4): 853–861.

Pandey, A., Selvakumar, P., Soccol, C. R., et al. (1999). Solid state fermentation for the production of industrial enzymes. Current science, 149–162.

Poyck, P. P., Hoekstra, R., Vermeulen, J. L., et al. (2008). Expression of glutamine synthetase and carbamoylphosphate synthetase I in a bioartificial liver: Markers for the development of zonation in vitro. Cells Tissues Organs, 188(3): 259–269.

Quaglia, D., Pori, M., Galletti, P., et al. (2013). His-tagged horse liver alcohol dehydrogenase: Immobilization and application in the bio-based enantioselective synthesis of (S)-arylpropanols. Process Biochemistry, 48(5–6): 810–818.

Ramos, A. M., Glenn, K. L., Serenius, T. V., et al. (2008). Genetic markers for the production of US country hams. Journal of Animal Breeding and Genetics, 125(4): 248–257.

Ranjan, B., Singh, B., & Satyanarayana, T. (2015). Characteristics of Recombinant Phytase (rSt-Phy) of the thermophilic mold Sporotrichum thermophile and its applicability in dephytinizing foods. Applied Biochemistry and Biotechnology, 177(8): 1753–1766.

Ranjan, K., Lone, M. A., & Sahay, S. (2016). Detergent compatible cold-active alkaline amylases from Clavispora lusitaniae CB13. The Journal of Microbiology, Biotechnology and Food Sciences, 5(4): 306.

Ren, H., Jiang, C., & Chae, J. (2017). Effect of temperature on a miniaturized microbial fuel cell (MFC). Micro and Nano Systems Letters, 5(1): 13.

Riaz, M. N., & Chaudry, M. M. (2003). Halal food production. CRC press.

Roohi, R., Kuddus, M., & Saima, S. (2013). Cold-active detergent-stable extracellular α-amylase from Bacillus cereus GA6&58; Biochemical characteristics and its perspectives in laundry detergent formulation. Journal of Biochemical Technology, 4(4): 636–644.

Russo, V., Fontanesi, L., Scotti, E., et al. (2008). Single nucleotide polymorphisms in several porcine cathepsin genes are associated with growth, carcass, and production traits in Italian Large White pigs. Journal of Animal Science, 86(12): 3300–3314.

Schauer, R. & Wember, M., 1996. Isolation and characterization of sialate lyase from pig kidney. Biological Chemistry, 377(5): 293-300.

Seppänen, M. M., Cardi, T., Hyökki, M. B., et al. (2000). Characterization and expression of cold-induced glutathione S-transferase in freezing tolerant Solanum commersonii, sensitive S. tuberosum and their interspecific somatic hybrids. Plant Science, 153(2): 125–133.

Shahani, K. M., Khan, I. M. & Chandan, R. C., (1976). Bovine Pancreatic Lipase1. I. isolation, homogeneity, and characterization. Journal of Dairy Science, 59(3): 369–375.

Shi, Y., Wang, Q., Hou, Y., et al. (2014). Molecular cloning, expression and enzymatic characterization of glutathione S-transferase from Antarctic sea-ice bacteria Pseudoalteromonas sp. ANT506. Microbiological Research, 169(2–3): 179–184.

Siddiqui, K. S. (2015). Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnology Advances, 33(8), 1912–1922.

Siddiqui, K. S., & Cavicchioli, R. (2006). Cold-adapted enzymes. Annual Review of Biochemistry, 75: 403–433.

Tapre, A. R., & Jain, R. K. (2014). Pectinases: Enzymes for fruit processing industry. International Food Research Journal, 21(2).

Tavakoli, A., & Hamzah, A. (2017). Characterization and evaluation of catechol oxygenases by twelve bacteria, isolated from oil contaminated soils in Malaysia. Biological Journal of Microorganism, 5(20).

Thadathil, N., & Velappan, S. P. (2014). Recent developments in chitosanase research and its biotechnological applications: A review. Food Chemistry, 150: 392–399.

Tsiklinsky, M. (1908). Flore microbienne: Expédition antarctique française (1903-1905). Par Mlle. Tsiklinsky. Masson & Cie.

Urbieta, M. S., Donati, E. R., Chan, K. G., et al. (2015). Thermophiles in the genomic era: Biodiversity, science, and applications. Biotechnology Advances, 33(6): 633–647.

Vanany, I., Maarif, G. A., & Soon, J. M. (2018). Application of multi-based quality function deployment (QFD) model to improve halal meat industry. Journal of Islamic Marketing.

Wahab, A. R. (2004). Guidelines for the preparation of halal food and goods for the Muslim consumers [PDF file]. Retrieved February, 28, 2012, from http://www.halalrc.org/images/Research%20Material/Literature/halal%20Guidelines.pdf.

Wang, B., Bai, Y., Fan, T., et al. (2017). Characterisation of a thiamine diphosphate-dependent alpha-keto acid decarboxylase from Proteus mirabilis JN458. Food Chemistry, 232: 19–24.

Wang, J., Liu, H., Wang, H., et al. (2016). Isolation and characterization of a protease from the Actinidia arguta fruit for improving meat tenderness. Food Science and Biotechnology, 25(4): 1059–1064.

Wang, Q., Hou, Y., Shi, Y., et al. (2014). Cloning, expression, purification, and characterization of glutaredoxin from Antarctic sea-ice bacterium Pseudoalteromonas sp. AN178. BioMed Research International, 2014.

Wang, Y. B., Gao, C., Zheng, Z., et al. (2015). Immobilization of cold-active cellulase from antarctic bacterium and its use for kelp cellulose ethanol fermentation. BioResources, 10(1): 1757–1772.

Wang, Y., Han, H., Cui, B., et al. (2017) A glutathione peroxidase from Antarctic psychrotrophic bacterium Pseudoalteromonas sp. ANT506: Cloning and heterologous expression of the gene and characterization of recombinant enzyme. Bioengineered, 8(6): 742–749.

Wangoh, J., Farah, Z., & Puhan, Z. (1993). Extraction of camel rennet and its comparison with calf rennet extract. Milchwissenschaft, 48(6): 322–322.

Wei, J., Timler, J. G., Knutson, C. M., et al. (2013). Branched-chain 2-keto acid decarboxylases derived from Psychrobacter. FEMS Microbiology Letters, 346(2): 105–112.

Willis, T. W. & Tu, A. T., (1988). Purification and biochemical characterization of atroxase, a nonhemorrhagic fibrinolytic protease from western diamondback rattlesnake venom. Biochemistry, 27(13): 4769–4777.

Wilcox, M. D., Brownlee, I. A., Richardson, J. C., et al. (2014). The modulation of pancreatic lipase activity by alginates. Food Chemistry, 146: 479–484.

Wirnt, R., (1965). Chymotrypsin. In Methods of enzymatic analysis (pp. 800–806).

Yu, P., Wang, X. T., & Liu, J. W. (2015). Purification and characterization of a novel cold‐adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic. Journal of Basic Microbiology, 55(8): 1029–1039.

Zheng, Y., Zhang, K., Su, G., et al. (2015). The evolutionary response of alcohol dehydrogenase and aldehyde dehydrogenases of Acetobacter pasteurianus CGMCC 3089 to ethanol adaptation. Food Science and Biotechnology, 24(1): 133–140.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.